
Run multiple Zeta.msgdm ispline models and return both models and combined ispline table
Source:R/run_ispline_models.R
run_ispline_models.Rd
Fits Zeta.msgdm
models of type “ispline” for a series of zeta-orders,
extracts the raw environmental covariates (plus distance) and their ispline bases,
and returns both the list of fitted models and one tidy data frame combining all orders.
Usage
run_ispline_models(
spp_df,
env_df,
xy_df,
orders = 2:6,
sam = 100,
distance.type = "Euclidean",
normalize = "Jaccard",
reg_type = "ispline"
)
Arguments
- spp_df
A data frame or matrix of species incidence/abundance.
- env_df
A data frame of environmental covariates.
- xy_df
A two-column data frame or matrix of site coordinates.
- orders
Integer vector of zeta orders to fit (e.g. 2:6).
- sam
Integer; number of random samples per order (passed to
Zeta.msgdm
).- distance.type
Character; distance metric for
Zeta.msgdm
(default “Euclidean”).- normalize
Character; normalization method for
Zeta.msgdm
(default “Jaccard”).- reg_type
Character; regression type for
Zeta.msgdm
(default “ispline”).
Value
A named list with:
zeta_gdm_list
A list of the fitted
Zeta.msgdm()
objects, named by order.ispline_table
A tibble with one row per sample, containing all original covariates (including
distance
), the ispline bases suffixed_is
, and azOrder
column.
Examples
if (FALSE) { # \dontrun{
data(bird.spec.fine); data(bird.env.fine)
xy <- bird.spec.fine[,1:2]
spp <- bird.spec.fine[,3:102]
env <- bird.env.fine[,3:9]
out <- run_ispline_models(
spp_df = spp,
env_df = env,
xy_df = xy,
orders = 2:6,
sam = 100,
normalize = "Jaccard",
reg_type = "ispline"
)
names(out)
head(out$ispline_table)
} # }