Skip to contents

This function calculates occupancy turnover as a time series.

Usage

occ_turnover_ts(data, ...)

Arguments

data

A data cube object (class 'processed_cube').

...

Arguments passed on to compute_indicator_workflow

ci_type

Type of bootstrap confidence intervals to calculate. (Default: "norm". Select "none" to avoid calculating bootstrap CIs.)

cell_size

Length of grid cell sides, in km. (Default: 10 for country, 100 for continent or world)

level

Spatial level: 'cube', 'continent', 'country', 'world', 'sovereignty', or 'geounit'. (Default: 'cube')

region

The region of interest (e.g., "Europe"). (Default: "Europe")

ne_type

The type of Natural Earth data to download: 'countries', 'map_units', 'sovereignty', or 'tiny_countries'. (Default: "countries")

ne_scale

The scale of Natural Earth data to download: 'small' - 110m, 'medium' - 50m, or 'large' - 10m. (Default: "medium")

output_crs

The CRS you want for your calculated indicator. (Leave blank to let the function choose a default based on grid reference system)

first_year

Exclude data before this year. (Uses all data in the cube by default.)

last_year

Exclude data after this year. (Uses all data in the cube by default.)

spherical_geometry

If set to FALSE, will temporarily disable spherical geometry while the function runs. Should only be used to solve specific issues. (Default is TRUE)

make_valid

Calls st_make_valid() from the sf package. Increases processing time but may help if you are getting polygon errors. (Default is FALSE).

num_bootstrap

Set the number of bootstraps to calculate for generating confidence intervals. (Default: 1000)

Value

An S3 object with the classes 'indicator_ts' and 'occ_turnover' containing the calculated indicator values and metadata.

See also

compute_indicator_workflow

Examples

ot_ts <- occ_turnover_ts(example_cube_1, first_year = 1985)
#> Warning: Bootstrapped confidence intervals cannot be calculated for the chosen indicator.
plot(ot_ts)
#> Warning: Removed 1 row containing non-finite outside the scale range (`stat_smooth()`).
#> Warning: Removed 1 row containing missing values or values outside the scale range
#> (`geom_point()`).