Skip to contents

This function calculates observed species richness over a gridded map or as a time series (see 'Details' for more information).

Usage

obs_richness_map(data, ...)

obs_richness_ts(data, ...)

Arguments

data

A data cube object (class 'processed_cube').

...

Arguments passed on to compute_indicator_workflow

ci_type

Type of bootstrap confidence intervals to calculate. (Default: "norm". Select "none" to avoid calculating bootstrap CIs.)

cell_size

Length of grid cell sides, in km. (Default: 10 for country, 100 for continent or world)

level

Spatial level: 'cube', 'continent', 'country', 'world', 'sovereignty', or 'geounit'. (Default: 'cube')

region

The region of interest (e.g., "Europe"). (Default: "Europe")

ne_type

The type of Natural Earth data to download: 'countries', 'map_units', 'sovereignty', or 'tiny_countries'. (Default: "countries")

ne_scale

The scale of Natural Earth data to download: 'small' - 110m, 'medium' - 50m, or 'large' - 10m. (Default: "medium")

output_crs

The CRS you want for your calculated indicator. (Leave blank to let the function choose a default based on grid reference system)

first_year

Exclude data before this year. (Uses all data in the cube by default.)

last_year

Exclude data after this year. (Uses all data in the cube by default.)

spherical_geometry

If set to FALSE, will temporarily disable spherical geometry while the function runs. Should only be used to solve specific issues. (Default is TRUE)

make_valid

Calls st_make_valid() from the sf package. Increases processing time but may help if you are getting polygon errors. (Default is FALSE).

num_bootstrap

Set the number of bootstraps to calculate for generating confidence intervals. (Default: 1000)

crs_unit_convert

Force a particular output CRS even when it has different units than the input CRS. (Default: FALSE)

shapefile_path

Path of an external shapefile to merge into the workflow. For example, if you want to calculate your indicator particular features such as protected areas or wetlands.

invert

Calculate an indicator over the inverse of the shapefile (e.g. if you have a protected areas shapefile this would calculate an indicator over all non protected areas)

Value

An S3 object with the classes 'indicator_map' or 'indicator_ts' and 'obs_richness' containing the calculated indicator values and metadata.

Details

Species richness

Species richness is the total number of species present in a sample (Magurran, 1988). It is a fundamental and commonly used measure of biodiversity, providing a simple and intuitive overview of the status of biodiversity. However, richness is not well suited to measuring biodiversity change over time, as it only decreases when local extinctions occur and thus lags behind abundance for negative trends. While it may act as a leading indicator of alien species invasions, it will not indicate establishment because it ignores abundance. Nor will it necessarily indicate changes in local species composition, which can occur without any change in richness. Although richness is conceptually simple, it can be measured in different ways.

Observed richness

Observed richness is calculated by summing the number of unique species observed for each year or each cell. Observed richness is highly dependent on the comprehensiveness of the dataset it is being applied to. If some regions are more intensively, carefully or systematically sampled than others, this will likely reflect as higher observed richness. Observed richness also depends on the relative abundance and spatial aggregation of each species, with less abundant and less aggregated species less likely to be discovered during surveys (Hillebrand et al., 2018), as well as the detectability of each species.

Functions

  • obs_richness_map():

  • obs_richness_ts():

References

Hillebrand, H., Blasius, B., Borer, E. T., Chase, J. M., Downing, J. A., Eriksson, B. K., Filstrup, C. T., Harpole, W. S., Hodapp, D., Larsen, S., Lewandowska, A. M., Seabloom, E. W., Van de Waal, D. B., & Ryabov, A. B. (2018). Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. Journal of Applied Ecology, 55(1), 169-184.

See also

compute_indicator_workflow

Examples

if (FALSE) { # \dontrun{
or_map <- obs_richness_map(example_cube_1, level = "country", region = "Denmark")
plot(or_map)
} # }
if (FALSE) { # \dontrun{
or_ts <- obs_richness_ts(example_cube_1, first_year = 1985)
plot(or_ts)
} # }