Provides a summary representation of an site_impact object, designed for user-friendly display in the console.
Usage
# S3 method for class 'site_impact'
print(x, n = 10, ...)Examples
# create data_cube
acacia_cube <- taxa_cube(
taxa = taxa_Acacia,
region = southAfrica_sf,
res = 0.25,
first_year = 2010
)
siteImpact <- compute_impact_per_site(
cube = acacia_cube,
impact_data = eicat_acacia,
method = "mean_cum",
trans = 1
)
# print species impact
print(siteImpact)
#> Site impact indicator
#>
#> Method: mean_cum
#>
#> Number of cells: 409
#>
#> Number of species: 10
#>
#>
#> First 10 rows of data (use n = to show more):
#>
#> # A tibble: 409 × 18
#> cellCode xcoord ycoord `2010` `2011` `2012` `2013` `2014` `2015` `2016`
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1110 29.9 -30.7 1.74 NA NA NA NA NA NA
#> 2 1376 30.4 -29.7 1.74 NA NA NA NA NA NA
#> 3 143 19.1 -34.2 3 NA 7.83 9.08 10.7 4.74 NA
#> 4 206 18.4 -33.9 4.95 6.70 8.03 12.0 10.7 7.70 15.8
#> 5 215 20.6 -33.9 1.74 1.74 1.74 NA 3.69 3.69 NA
#> 6 668 18.4 -32.2 1.33 NA NA NA NA NA NA
#> 7 1312 30.9 -29.9 NA 1.95 NA NA NA NA NA
#> 8 1375 30.1 -29.7 NA 1.74 NA 1.74 NA NA NA
#> 9 144 19.4 -34.2 NA 1.95 1.74 NA NA NA NA
#> 10 209 19.1 -33.9 NA 1 1 NA 10.7 NA 1.95
#> # ℹ 399 more rows
#> # ℹ 8 more variables: `2017` <dbl>, `2018` <dbl>, `2019` <dbl>, `2020` <dbl>,
#> # `2021` <dbl>, `2022` <dbl>, `2023` <dbl>, `2024` <dbl>
