This function calculates a normal confidence interval from a bootstrap
sample. It is used by calculate_bootstrap_ci()
.
Arguments
- t0
Original statistic.
- t
Numeric vector of bootstrap replicates.
- conf
A numeric value specifying the confidence level of the interval. Default is
0.95
(95 % confidence level).- h
A function defining a transformation. The intervals are calculated on the scale of
h(t)
and the inverse functionhinv
applied to the resulting intervals. It must be a function of one variable only. The default is the identity function.- hinv
A function, like
h
, which returns the inverse ofh
. It is used to transform the intervals calculated on the scale ofh(t)
back to the original scale. The default is the identity function. Ifh
is supplied buthinv
is not, then the intervals returned will be on the transformed scale.- no_bias
Logical. If
TRUE
intervals are centered around the original estimates (bias is ignored). Default isFALSE
.
Value
A matrix with four columns:
conf
: confidence levelll
: lower confidence limitul
: lower confidence limit
Details
$$CI_{norm} = \left[\hat{\theta} - \text{Bias}_{\text{boot}} - \text{SE}_{\text{boot}} \times z_{1-\alpha/2}, \hat{\theta} - \text{Bias}_{\text{boot}} + \text{SE}_{\text{boot}} \times z_{1-\alpha/2} \right]$$
where \(z_{1-\alpha/2}\) is the \(1-\alpha/2\) quantile of the standard normal distribution.
Note
This function is adapted from the function norm.ci()
in the boot package (Canty & Ripley, 1999).
References
Canty, A., & Ripley, B. (1999). boot: Bootstrap Functions (Originally by Angelo Canty for S) [Computer software]. https://CRAN.R-project.org/package=boot
Davison, A. C., & Hinkley, D. V. (1997). Bootstrap Methods and their Application (1st ed.). Cambridge University Press. doi:10.1017/CBO9780511802843